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Foreword

An experiment was conducted to determine electrical
characteristics of single conductor sea-water-return
transmission lines. The empirical data presented here
characterize three electrically different transmission
lines, which are 20,000 feet long and 0.1 inches in
diameter. The characterization is performed by present-
ing transmission line attenuation and phase as a func-
tion of several design pa ameters. This information is
needed to predict performance and is, therefore, needed
to optimize design of any system depending on such a
transmission line for transmission of information. This
effort was sponsored by the Naval Electronics Systems
Commar2, PME 124-32.

DR. JAMES E. ANDREWS
Technical Director, NORDA



Executive Summary

An experiment was conducted at sea to determine charac-
teristics of three single copper conductor transmission

lines. All three transmission lines incorporated sea-
water as an electrical return path and graphite shield-
ing of various constructions in an attempt to achieve
desirable characteristics of coaxial transmission
lines. The transmission lines were 20,000 feet long,
0.1 inches in diameter, and used braided Kevlar as a
strength member. The primary problem addressed was
measuring low frequency (<20 kHz) attenuation and phase
shift of the transmission lines as a function of con-
figuration in the water column and as a function of
graphite shield construction. Results of the experiment
showed that transmission line electrical characteris-
tics are much better when the line is fully payed out
as opposed to part of the line being coiled. Results
also showed that for the multiplexed telemetry system
of particular interest, characteristics of the lines
for frequencies near zero hertz are poorer than char-
acteristics at a few kilohertz. Further, it was found
that attenuation was much less than that of similar
lines except using copper drain wires to emulate a
coaxial transmission line. These results are true for
all three transmission lines tested. The most signifi-
cant finding of the investigation described here is
that electrical and mechanical charauteristics of the
transmission line of interest can simultaneously be
improved by removing drain wires from the design. A
description of the techniques used to conduct the
experiment, as well as results of the experiment, are
included in this publication.
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Electrical Characteristics of
Sea-Water-Return Transmission Lines

I. Introduction

This publication presents results of an The following sections describe the ex-
ocean experiment conducted to character- periment in more detail and the results
rize transmission lines with respect to that were obtained.
requirements of the Rapidly Deployable
Surveillance System (RDSS). Results are 11. Experiment Description
presented in the fcrm of transfer func-
tions, which describe attenuation and The experiment was designed to measure
phase of the transmission lines as a transfer functions of several transmis-
funt tion of frequency. A transmission sion lines under environmental condi-
linc's transfer function is extremely tions similar to that of actual opera-
usefuil, since it provides necessary and tions. The test setup of Figure 2

sufficient information for predicting accomplishes this purpose. The bailed
performance of any telemetry system transmission line (cable) under test was
using the line. dropped from the ship and was allowed to

freefall to the bottom, at which time
The transmission line (cable) for a sys- the ship slowly moved away to eventually
tem, such as that described in Figure 1, pay out all of the cable. The wet end of
is complicated because part of the cable the cable was attached to a pulser,
is payed out while part of the cable which generated a broadbaad linear phase
remains coiled. The amount of coiled signal. This driving signal allowed the
versus payed out is not constant, but transmission line to be characterized by
depends on water depth where the system observing only the dry end. Periodical-
is deployed. This complexity makes it ly, the pulser would electrically dis-
difficult, if not impossible, to obtain connect from the line to allow for cable
characteristics of the transmission line insulation testing. The wet end test
by other than empirical means. Empirical fixture was also instrumented with an
results, however, are also difficult to acoustic transponder that was used in
obtain. This difficulty is due to the conjunction with shipboard equipment to
fact that meaningful measurements can be estimate the amount of cable payed out
made only with the transmission line in as a function of time. The experiment,
a configuration similar to that of ac- therefore, measured cable attenuation
tual use. Specifically, the transmission and phase as a function of both frequen-
line must be tested in the ocean with cy and amount of cable payed out of the
the constraint of only one end being bail.
available for observation. This con-
straint precludes the use of classical The transmission line under test was
techniques for measuring attenuation and electrically terminated at the dry (re-
phase. The technique used to obtain the ceive) end by virtually an open circuit
results presented here is a Fourier (_i06 ohm) while terminated at the wet
technique, and is described in Reference (transmit) end by virtually a short cir-
I and briefly in Appendix A. The primary cuit (::5 ohm). Attenuation was defined
feature of this technique is that it as the ratio of transmit (wet) end vol-
simultaneously measures phase and atten- tage to receive (dry) end voltage. This
uation of the transmission line while definition is different from classical
observing only one end.



definitions*; therefore, one must be applied to' the outside of the insulator
careful when comparing data presented during the Kevlar overbraiding process.
here w1th that from other sources such
as the the-retical investigation of C. Cable No. 3
Cottrell [2].

The third cable, cable #3, utilized a
Ill. Types of Transmission Lines Tested stranded, 20 AWG copper conductor insu-

lated to a diameter of 0.069 inches.
Three 20,000 foot long transmission Shielding consisted of a graphite layer
lines were tested. Each line was rein- inside the insulation.
forced by overbraiding with Kevlar,
rasultinR, in c-bles approximately 0.1 IV. Results
inches diameter, with breaking
st engths approximately 600 pounds. The The three b '.ed transmission lines that
cables were bailed to form bails 20 were testee .re characterized by presen-
inches long, 12 inches outside diameter ting attenuation and phase as a function
and 6 inches inside diameter. An adhes- of frequency for various lengths of
ive compound was applied to the cables cable payed out of the bails. Frequen-
during the bailing pro.ess so that they cies range from 100 hertz (Hz) to 20
would unbaii (from the inside) in a kilohertz (kHz) in 100 Hz steps, except
well behaved Zashion. As a further note, for some data which extend to 30 kHz.
the calies were bailec with no pretwist. Payout lengths range from 100 feet (ft)

to 20,000 ft, except for cable #2 which

Lacl . a-..ssion llne employed a graph- unfortunately tangled, allowing only
ite c,& ng to emulate a coaxial line. 12,000 ft to pay out.
In cular, it was desired to have a
cable with transmission characteristics Before presenting attenuation and phase
independent of mechanical geometry data, it is important that both be care-
(coiled or straight). Specifics of each fully defined. Attenuation is defined as
rransmissLon line are outlined below, the ratio of input voltage to output

voltage uhere input, output, and termin-
A. Cable No. 1 ating conditions are explained in Figure

3. Phase is defined as the difference
The first cable, cable #1, utilized a 24 between the phase* of the output, Vo,
American Wire Gauge (AWG; copper conduc- and phase of the input, Vi. Further,
tor (7 stranids of AWG 32) insulated with it is important to note that only the
clear polypropylene to an outside diam- nonlinear** portion of phase is present-
eter of 0.062i inches. A graphite- ed. This represents no shortcoming,
impregnated wax was applied to the Kev- since, for the intended application, the
lar strength member in an attempt to linear*** phase portion is of no inter-
form a shield. est. For ease of comparison, presented

phase responses have been normalized to
B. Cable No. 2 -300' at 20 kHz.

The second cable, cable #2, utilized an * A positive phase implies output leads
AWG 24 (7 strands AWG 32) ccpper conduc- input.
tor insulated to an outside diameter of
0.0625 inches. A graphite coating was ** Nonlinear with respect to frequency.

*Attenuation is usually defined as the ***Linear phase represents simply a time
ratio of input power to output power delay which is constant with respect to
with a terminating load impedance equal frequency and, therefore, does not con-
to the characteristic impedance of the tribute to distortion of the received
transmission line. signal.
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Accuracy of the presented data is ap- through 18 reveals that cable #2 is
proximately 5° and 1 decibel (dB) for similar to cable #1 in that character-
standard deviations of phase and attenu- istics become better* as more cable is
ation, respectively. Accuracy of indi- payed out of the bail.
cated payout lengths is believed to be
+10% for lengths near zero payout and Cable #2 survived deployment and recov-
full payout, and +30% for intermediate ery without any insulation failures.
payout lengths.

C. Cable No. 3
A. Cable No. 1

Measured attenuation and phase of cable
Measured attenuation and phase of cable #3 is presented in Figures 19 through
#1 is described by Figures 4-12. Compar- 25. Cable #3 is similar to cables #1 and
ing Figure 5 ( 2 kft payed out, -18 kft #2 in that characteristics are much
coiled) with Figure 10 (--20 kft payed better* when the cable is payed out as
out,,0 coiled) illustrates the tremend- opposed to a large portion of the cable
ous differences in response between full being coiled. Figure 25 indicates the
payout configuration and that of partial attenuation at full payout to be slight-
payout. Figure 5 (-2 kft payout) shows ly nonmonotonic or "wavey" with respect
strong "resonances" (valleys and peaks) to frequency. This behavior is different
in the attenuation, whereas Figure 10 from that intuitively expected, and can
(full payout) shows a much better perhaps be explained by concluding that
behaved attenuation function. Also, com- data for Figure 25 were obtained with a
paring the phase of Figure 5 and Figure few turns of cable remaining in the bail
10 illustrates that the phase response as opposed to fully payed out.
is much more linear with respect to
frequency (a desirable property) when Cable #3 also survived deployment and 2

fully payed out as opposed to partially retrieval withou- insulation failures.
payed out. Figure 11 is a waterfall pre-

sentation of cable #1 attenuation. The D. Comparisons
waterfall presentation plots attenuation
as a function of frequency for payout Comparing measured characteristics of
lengths ranging from 100 ft to full the three transmission lines reveals
payout. Notice from Figure 11 that as that, in all cases, transmission charac-
cable payout increases (amount coiled teristics become better as more cable is
decreases) the resonances tend to move payed out (less cable coiled).
to higher frequency and eventually
become relatively small in amplitude. A Low frequency (100 Hz to approximately 2
similar presentation of phase would kHz) characteristics differ greatly from
serve to illustrate the phase becoming characteristics at higher frequencies
more linear as more cable is payed out (approximately 2 kHz to 20 kHz). In par-

of the bail. ticular, group delay [3] (derivative of
phase with respect to frequency) is much

Insulation tests showed that cable #1 greater and changes much faster with
survived deployment and recovery without respect to frequency at low frequencies
any insulation failures. than at higher frequencies. Also, atten-

uation changes much faster at the lower
B. Cable No. 2 frequencies. These effects are quite

pronounced under conditions of partial
Measured attenuation and phase of cable
#2 is described by 1-ures 13-18. Cable
#2 tangled during deployment; therefore, * Better is defined as attenuation being
payout length i-, limited to -12,000 ft more uniform and phase being more linear
(-8000 ft coiled). Examining Figures 13 with respect to frequency.
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payout and are still noticeable at full VI. References
payout. Further evidence is data from
cable #4, which are displayed in Figure [1] Gholson, N. H., Measuring Transmis-
26. Cable #4 has been excluded thus far sion Line Transfer Functions Using a
because of its length being 10 kilofeet Fourier Technique, Proceedings of the
(kft) as opposed to 20 kilofeet. Cable 29th International Wire and Cable
#4 also differs irom cables #1, #2, and Symposium, 1980.
#3 in tha: no graphite shielding is
employed.

[2] Cottrell, James E., Wideband Elec-
Attenuation of cable #3 is less, partic- trical Characteristics of Small Diame-
ularly at full payout, than that of ter Instrumentation Cables in Seawater,
cable #1. This is probably due to the Naval Ordnance Laboratory NULTR 67-22,
larger conductor of cable #3. Figure 27 26 June 1967.
compares full payout attenuation of
cables #1 and #3 to a cable that is sim- [3] Rhodes, J. P., Th, ory of Electrical
ilar, except for using copper drain Filters, John Wiley and Sons, 1976.
wires as opposed to graphite. Notice the
drain-wire transmission line exhibits [4] Preble, J., Unpublished data, San-
much wuore attenuation [4] than the other ders Associated, Nashua, N.H.
two.

V. Conclusions

Characteristics of all the transmission
"lines tested are much better (with re-
spect to the telemetry system of inter-
est) at higher transmission frequencies
than at lower frequencies. For example,
a channel of 17 kHz bandwidth is much
better located between 3 kHz and 20 kHz
than between 0 kHz and 17 kHz. This
observation is quite significant, since
the transmission lines tested incorpora-
ted three different graphite shield
constructions,' two different lengths,
and two conductor sizes. Another signif-
icant conclusion is that transmission
lines incorporating drain wires have
poorer attenuation characteristics than
transmission lines of similar physical
dimensions but without drain wires.
Transmission characteristics of all
cables tested were much better when
fully payed out as opposed to partially
payed out.
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Sea-Water-Return Transmission Line

Coiled Portion of Transmission Line
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Figure 1. Example of system using sea-water-return transmission line

TranspondlingAcquisition Eqimn

F'ulser Acoustic Transponder

Figure 2. Test setup
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Surface

Sea Water Ground

"Transmission Line Under Test

Coiled Portion of Transmission Line

+
5 where A(f) 20 Log10 (Vi/Vo)

where A(f) attenuation in decibels (dB)

Sea Water Ground -' as a function of frequency f

Vi Amagnitude of sinusoidal
input voltage of frequency f

Vo Amagnitude of sinusoidal out-
put voltage of frequency f

Figure 3. Dkifinirg att -nuation
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Appendix: Measurement Technique

"The technique used to obtain data pre- the non-ideal nature of analog-to-digi-
* sented in this report is a Fourier tech- tal converters. The input, Vi, in this

nique. This technique addresses measur- case, is from a carefully designed pulse
ing the transfer function of a two-port generator and is, therefore, known pre-
linear system by observing only the cisely except for its time origin. In
output port. The technique is based on other words, Vi(t-A) is known precise-
the following property of a linear ly except A (a fixed delay) is unknown.
system [1]. Therefore, the estimate Vi(jw) is re-

lated to Vi(jw) by the following:

Vo(M) = Vi(jw) H(jw) (A-l)

Vi(ju) = Vi(jW)9"6 (A-3)
whel.e Vi and Vo are Fourier* trans-
forms of the system input and output and
H is the system transfer function. Substituting equation (A-3) into (A-2)
Equation (A-i) implies that knowledge of and assuming for the moment that
a system's input and response (output) Vo(jw ) contains no error, results in
is sufficient to deduce the system the following, expression which relates
transfer function. Explicitly, we can our estimate H(jw) to the true transfer
define an estimator as follows: function H(jw).

Vo(ju)
H(jw) - ,for all Vi # 0 (A-2) H(ji) = H(jw)SjWA (A-4)

Vi(JW)

Aw
where Vi and Vo are estimates of the The magnitude of eJiA is identically
system input and output and H is, there- unity and, therefore, has no effect on
fore, an estimate of the system transfer our attenuation estimate. The phase of
function. Clearly, from equation (A-2), SjwAis linear with respect to frequen-
the quality of our estimate, H, is cy and simply represents the unknown
dependent on the quality of Vo and delay cited earlier. Therefore, our es-
Vi. The function Vo is obtained by timate H(jw) provides an estimate of
measuring the system output and is, attenuation and phase except for an
therefore, subject to errors such as unknown linear phase component. Fortun-
those due to additive noise and ately, for the intended purposes of

these data, the linear phase component
* In this appendix, upper case letters (delay) is of absolutely no interest.
will be used to indicate the Fourier
transform of time functions denoted by REFERENCE
lower case letters. For example,

[1] Papoulis. A., Probability, Random

Variables, and Stochastic Processes,
+ co McGraw-Hill, 1965.

X(jW) f_ x(t)g-J dt

+co

where j A /-1.
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